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The flow induced by torsional oscillations of 
infinite planes 

By A.  F. JONES? and S. ROSENBLAT 
Mathematics Department, Imperial College, London 

(Received 26 August 1968) 

A viscous fluid is confined between two parallel, infinite planes which perform 
torsional oscillations of small amplitude about a common axis. The resulting 
flow is studied for the case of high-frequency oscillations, when boundary layers 
form adjacent to moving surfaces. Particular analysis is made of the second-order, 
steady, radial-axial streaming. It is shown that in certain circumstances vis- 
cosity may be effective throughout the domain of flow, while in others there is a 
region in which viscosity is negligible. 

1. Introduction 
The flow induced in a semi-infinite viscous fluid by the torsional oscillations 

of a plane has been studied by several authors (Rosenblat 1959; Benney 1964; 
Riley 1965), and its properties are well understood. Its most important charac- 
teristics, which it shares with other flows resulting from the oscillations of an 
immersed solid (see for example Riley 1967, which contains an extensive list of 
references), are the formation of an oscillatory (Stokes) shear layer a t  the moving 
boundary, and the development of a second-order, time-independent streaming. 
This latter flow may extend throughout the fluid or may, for certain values of the 
relevant physical parameters, be confined within a second layer in the neighbour- 
hood of the boundary. The existence of two regions of flow necessitates the use 
of a suitable approximation technique, such as the method of matched asymptotic 
expansions (cf. Van Dyke 1964), to obtain solutions. 

The subject of the present paper is an extension of the above situation, in t,he 
sense that there is a second boundary present confining the fluid. More specifically, 
the fluid is bounded by two parallel planes, both of which perform torsional 
oscillations about a common axis. 

A partial solution to this problem was given by Rosenblat (1960), but only for 
a narrow range of parameters, which in fact excluded the formation of the second 
boundary layer mentioned earlier. In the following, this restriction on the para- 
meters is removed, and our interest is focused on the flow in this secondary layer 
and in the region beyond it. 

With respect to  a cylindrical polar co-ordinate system (T,  8, z ) ,  the fluid is 
taken to be confined between parallel, rigid planes z = 0 and z = d, which may 
oscillate about a common axis r = 0. If (u, v, w) are the velocity components in 
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this co-ordinate system, torsional oscillations of the plane z = 0 (henceforth 
referred to for convenience as the ‘lower ’ plane), of given frequency g and angular 
speed w,  determine one set of boundary conditions, namely, 

u = w = 0, v = rwe&t on z = 0, all r,t?,t. (1.1) 

u = w = 0, v = roleiut on z = d ,  all r,t?,t, (1.2) 

A similar motion of the ‘upper’ plane z = d fixes analogous conditions there: 

where in general w1 may be complex to allow for a possible phase difference. 
This most general boundary-value problem has been studied in detail by 

Jones (1968). In this paper, however, werestrict ourselves to two special cases 
which are typical in the sense that their solutions include and exemplify the 
main features of more general situations. These two cases have (1.1) as the lower 
boundary condition for both, and either 

u=w=O, v = O  on z = d ,  (1.3a) 

or u=w=O, v = r w e i u t  on z = d  (1.3b) 

as the upper boundary condition. Thus, in the former the plane z = d is at  
rest, while in the latter it has the same motion as the lower plane. 

The flows specified by the conditions (1.1) and (1.3) involve four length scales: 
(i) radial distance r ,  (ii) axial distance d, (iii) amplitude of oscillation rw/g ,  and 
(iv) Stokes-layer thickness (v/cr)*, v being the kinematic viscosity. From these 
four quantities it is possible to construct exactly three independent, dimensionless 
parameters, namely, (i) r*/d, where r* is a measure of length in the radial direction, 
(ii) amplitude parameter w / c ,  which is the ratio of the amplitude of the oscilla- 
tions to the radial distance, and (iii) frequency parameter d(a/v)*, the ratio of 
the Stokes-layer thickness to the distance between the planes. In  the present 
problem, however, the plane geometry of the system allows a solution in which 
r is a similarity variable, so that the parameter r*/d does not appear in the analysis. 
It follows that the motion is characterized by the two remaining parameters, 
which we designate 

e = w / a  and h = d J(a/v) .  (1.4) 

e < l  and A 3  1, (1.5) 

We shall in the following be concerned only with flows in which 

that is, small amplitude oscillations at  high frequency. It will soon become 
apparent, however, that the relative magnitudes of e and h - I  are crucial to the 
nature of the solution. 

2. Development of the solution 

in the usual notation, are 
The flow is governed by the Navier-Stokes and continuity equations which, 

(2.1) 

and v .q  = 0. (2.2) 
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It is consistent with the boundary conditions (1.1) and (1.3) to seek a solution 
in which all motions are axi-symmetric, and such that the velocity components 
and pressure may be non-dimensionalized as follows: 

u = rw(a/az’)F(z’,t‘), v = rwG(z’,t’), w = - 2wdF(z’,t‘), 

p/p = 02d2p(z’ , f )+Sw2r2X(t’) ,  (2.3) 

where z ’=  z/d and t’ = at (2.4) 

are dimensionless distance and time respectively. With these transformations, 
equation (2.2) is identically satisfied, and equations (2.1) become, on omitting 

and 

together with a third equation which serves only to determine the axial pressure 
gradient after the velocity components have been found. It is convenient for the 
subsequent analysis to eliminate the radial pressure gradient K ( t )  from (2.5), 
by differentiation with respect to z. We have then, in place of (2.5), 

The boundary conditions (1.1) and (1.3) now take the form 

F = aF/az = 0, G = eit on z = 0,  (2.8) 

P =aF/az = 0, G=yeit  on z = 1, (2.9) 

where y is a constant which takes the values 0 and 1, corresponding to the two 
cases ( 1 . 3 ~ )  and (1.3b) respectively. 

A natural approach to the solution of the system (2.6)-(2.9) consists in the 
expansion of the functions F and G in series 

00 m 

12=0 n=O 
F(z,t;h;E) = EFn(z , t ;h ) ,  G(Z,t;h;E) = C PG,(z,t;A). (2.10) 

This immediately linearizes (2.6) and (2.7), thereby rendering the problem tract- 
able. However, the basis of (2.10) is the hypothesis that the series constitute 
valid asymptotic representations of F and G in the limit E+O, and it has been 
shown by Rosenblat (1960) that this is in fact not always the case. More pre- 
cisely, the situation has been found to be as follows. (i) The series are available 
without qualification when h = O(1). (ii) When h 9 1, (2.10) provide uniform 
asymptotic expansions for limited values of z only, namely, within boundary 
layers adjacent to moving boundaries. (iii) Outside such layers, the first and 
second terms in the series for the time-independent component of F are in the 
ratio 1 :A. Consequently, in this region the expansion can be regarded as a valid 
approximation only when 

p = e h <  1. (2.11) 
22-2 



340 A .  P. Jones and S. Rosenblut 

The solutions when (2.11) holds have been given by Rosenblat (1960). In this 
paper we therefore concentrate on the alternative case, when 

p 4: 1. (2.12) 

In view of the preceding remarks, it will clearly be necessary to use expansions 
other than (2.10) in appropriate ranges of z, and to attempt to link them by a 
matching procedure. 

It is noteworthy that the parameter p 2  is closely analogous to the Reynolds 
number R,, introduced by Stuart (1963) to describe the steadv streaming generated 
by an oscillating cylinder. 

3. Shear layer solutions 
It is apparent that when h 9 1 a Stokes shear layer, of thickness order A-l,  

will form adjacent to each moving boundary. The boundary-layer solutions are 
found, as is usual, by an appropriate scaling of variables followed by taking the 
limit h+m. 

Introduce boundary-layer variables defined by 

vl = A x  near x = 0,  7, = h(1-z)  near x =  1. (3.1) 

We then postulate that the velocity components can be described by writing 

near x = 1. (3.2b) 
G(Z, ...I gu(vu, ... ) + O( l /h) ,  

F(z ,  ... ) N -h-lfu(vu, ...)+ O(l/h2), 

The effect of these transformations is that the pairs of functions gz,fi and gu, f, 
satisfy the same equations in their respective arguments. These equations are 
found by substituting (3.2) into (2.6) and (2.7), and retaining only the leading 
terms as h --f co. We obtain, near both boundaries, 

and 

(3.3) 

(3.4) 

The boundary conditions (2.8) and (2.9) are now replaced by 

f =af/av = 0, g = p e i t  on 4 = 0,  (3.5) 

where ,u = 1 on the lower plane, and ,u = 0 or 1 on the upper plane, together with 
the requirement that solutions so obtained should match with appropriate interior 
solutions, beyond the shear layers, asymptotically as 7 -+ 00. This implies the 
rejection of any exponentially-growing terms which arise. 

The functions f and g, as defined in (3.2), depend on the parameter c,  and it is 
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now supposed that they admit series expansions in powers of B which are valid 
representations as E +  0. We substitute 

into (3.3) and (3.4), and equate coefficients of like powers of E. 

The first pair of equations so obtained govern the zero-order functions go and 
fo. After applying boundary conditions at 7 = 0 and matching with the corres- 
ponding interior, inviscid solution (which is zero), we find 

0- - peit-di7) 9 f 0 = 0  (3.7) 

(it being understood that the real part of go is to be taken). 
The next pair of equations, order unity in E ,  gives by a similar procedure that 

91 = 0, 

while fl is seen to be the sum of a time-independent and a second-harmonic 
component. The former, which is of major interest, we denote by fp). It is found to 
be 

where the constants a and p are to be determined from the matching. The second- 
harmonic term can easily be obtained, but it is not necessary to state it explicitly. 

Reverting now to the functions F and G through (3.1) and (3.2), and denoting 
the time-independent part of F by F@), we have thus far, 

G N {eit+’iTl + 0(s2)) + O(h-l), I 

near z = 0; and 

(3.10) 

near z = 1. At the upper boundary we see that G and FCS) N 0 when ,u = 0; this 
is to  be expected, since there is no Stokes layer adjacent to a boundary at  rest. 

4. The central region : general considerations 
The nature of the solutions in the interior can be inferred from the following 

discussion which, it should be emphasized, is intended as heuristic argument 
rather than rigorous analysis. 

To the order of magnitude under consideration, both the azimuthal velocity 
and the fluctuating part of the radial velocity are zero. We omit demonstration 
of this fact here, since it is a common phenomenon in flows of this type. If there- 
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fore we separate the radial-axial flow function F into steady and fluctuating 

F = F ( s ) ( ~ )  + F(f)(z ,  t ) ,  (4.1) 
components, by writing 

then we have that, approximately, 

G N 0, dF(f)/dz - 0 (4.2) 

in the interior. The only flow component which persists outside the boundary 
layers is the steady streaming F(8), and the remainder of this work is concerned 
with its evaluation. 

In  view of (4.2), the function F(s) satisfies in the interior the equation 

which is merely the time-independent version of (2.7), with the negligible con- 
tributions from G and F( f )  discounted. The boundary conditions (2.8) and (2.9) 
are now replaced by the requirement that F@) should match asymptotically 
with the shear-layer solutions (3.9) and (3.10). 

In  order to achieve this matching, a suitable scaling of both independent 
and dependent variables in (4.3) is necessary. This scaling has a second function 
to fulfil, namely, to render the two terms in (4.3) comparable in magnitude. 
This is because the linearization procedure discussed earlier, which neglects 
the non-linear convection term on the left of (4.3) in comparison with the viscous 
term on the right, is not valid when (2.12) holds. 

Let the scaled variable be 
6 = uz = (a/h)r, (4.4) 

a/h < 1. (4.5) 

F(s) = O(a/sA2). (4.6) 

where a is a constant to be determined, and where clearly 

To attain a balance of terms in (4.4) on this scale we must have 

The value of a is to be found by matching with (3.9) and (3.10), which involve 
unknown constants a and /I. We now show that these constants are asymptotic- 
ally zero as h -+ 00. 

Consider initially the case ,u = 0, when there is a layer at the lower plane only. 
Suppose a, = 0(1), and temporarily let p, = 0. Then the dominant term in (3.9) 
at the edge of the layer is, after re-scaling, 

F@) N sh-l. a,. (h/a)26;, (4.7) 

and this is required to match with a one-term expansion of (3.4). Since (4.7) is 
quadratic in C,, the boundary conditions on this solution of (4.3) are 

while at  the upper plane we have 

(4.9) 
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Hence the leading-term solution of (4.3) must satisfy the four homogeneous 
boundary conditions (4.8) and (4.9). It can be shown rigorously that, as might be 
expected, this system has no solution other than 

P(5) = 0, (4.10) 
(see Jones 1968). 
From the correspondence between (4.7) and (4.10) it follows that 

CC, N 0. 

A similar argument can be used to show that j$ - 0, and that, when p = 1, 

The leading term in (3.9) at the edge of the layer is therefore in fact 
both a= and j?, N 0 also. 

FS) N €A-1. ir ,  = (./a) . &, (4.11) 

near z = 0 (but similarly near x = 1). Comparing (4.11) with (4.6), we see that 

a = e A = p .  

Hence the appropriate transformations for (4.3) are 

K ) ,  5 = pz,  Pb) = A-1 

d3q5 d4q5 -24-  = - 
d p  dC4 

and these lead to the equation 

outside the Stokes boundary layers. 

(4.12) 

(4.13) 

(4.14) 

5. The central region: the case p = O( 1) 

On the basis of the foregoing discussion, it is now possible to determine the 
flow solution in the central region. Strictly, the correct procedure would be t o  
return to the original equations (2.6) and (2.7), and to seek new expansions, based 
on the scalings derived in $4, for all the components of P and G .  The algebra 
involved, however, is tedious and the details are omitted (but see Jones 1968). 
The outcome is simply to confirm that the azimuthal and fluctuating radial veloci- 
ties are asymptotically zero in the central region, and that only the steady radial- 
axial flow persists. Thus we go direct to (4.3). 

For the purposes of the numerical calculations which follow, we replace the 
more general p = O( 1) by the reasonably typical special case 

p =  1. 

Then a = 1, 6 = x and (4.13) has the form 

2 = 2 ,  F(S) = €&), 

which lead to  the governing equation (4.14) throughout the interior. The boundary 
conditions on the solution of (4.14) are 

$ + O ,  d$ldz+& as x + O ,  (5.3) 

q5-+0, dq5/dx-+$p as x - f l ,  (5.4) 

which are a consequence of the matching condition (4.11). A t  the upper plane 
we have 
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which represent either the original boundary conditions on a stationary plane, 
or a second matching, depending on whether ,u = 0 or 1. 

Numerical solutions of the non-linear system (4.14), (5.3) and (5.4) have been 
obtained using a standard Runge-Kutta-Gill integration procedure on an 

0.04 k 

-0.04 
FIGURE 1. Variation of 9 with z in the case p = O(1). 

0.2 

0. I 

9' 

-0.1 

FIGURE 2. Variation of fl with z in the case p = O(1). 

IBM 7094 digital computer. The results are shown in figures 1 and 2. Figure 
1 illustrates the variation of q5 (axial velocity) with z for the cases ,u = 0, 1, 
and figure 2 the variation of @ (radial velocity). 

When p = 0, the radial motion is outwards in the part of the central region 
near the moving boundary, i.e. in the same direction as in the shear layer. Further 
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away, this flow changes direction and becomes radial inflow as far as the plane 
z = 1, balancing the outflow. The axial flow is everywhere directed towards the 
moving plane. 

When p = 1, there is symmetry of $' about the mid-point z = 4. The radial 
flow is outward near both boundaries and inward in the centre. The axial flow 
changes sign a t  the mid-point. 

6. The central region: the case p 9 1 

The arguments of 94 continue to apply, but the scaled system (4.13) and 
(4.14) is now valid only within a distance O(21-l) from each boundary. Thus we 
have the formation of a second boundary layer for the steady flow, of thickness 
O(&) greater than the Stokes layer. The same phenomenon occurs in a semi- 
infinite fluid (Rosenblat 1959). Equation (4.14) has now to satisfy 

(b-+O, $-.a as (;-to, (6.1) 

which are the conditions of matching with the Stokes-layer solution. But as 
C+cc we require that the solution of (4.14) should match with an appropriate 
solution in an interior region, beyond the second boundary layer. 

For convenience we shall refer to this latter region as the inner core. In  this 
core we put 

this transformation being justified a posteriori. Substituting (6.2) into (4.14), 
and taking the limit p + 00, we obtain 

F("(z) = A-l$(z), z = 2, (6.2) 

d3$ldz3 = 0, (6.3) 

where $ in (6.3) is understood to be the leading term in an expansion of (6.2) 
asp 3 co. Equation (6.3) is seen to be the equation of inviscid flow in the inner core. 

For general values ofp, the procedure of matching the solution of (6.3) with the 
solutions (near each boundary) of (4.14) is rather complicated (see Jones 1968). 
In the special casep = 1, however, we can simplify matters by invoking symmetry 
considerations. Clearly the core flow must be symmetrical about z = 4, so that 
in place of matching a t  the upper boundary we impose the boundary conditions 

9 = d2$//dz2 = 0 a t  z = &. (6.4) 

The solution of (6.3)-(6.4) is 
$ = k(4 - z ) ,  

where k is an integration constant. Rewriting this in terms of the variable Q, 
and retaining only the leading component, we have 

(6.6) 

as x + O .  These therefore represent the matching conditions for (4.14) as &-+a. 
In the notation of (4.14) they are 

F(") N A-1 . ik, dF(')/& N - A-l . k 

(b(C0) = *k, d$/d& (00) = - klp N 0. (6.7) 
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A single integration of (4.14) now gives 

9"'+2$6-$'2 = 0. (6.8) 

This equation, with boundary conditions (6.1) and $'(a) = 0, occurs in the case 
when the fluid is semi-infinite, and has been solved numerically by Benney 
(1964). Benney's paper contains graphs of $ and qS, so these are not reproduced 
here. The constant k, proportional to the in3ow at the edge of the second layer, 
is found to be 

(6.9) k = 0*530,/2 M 0.748. 

Taking Benney's solution in the boundary layer, together with the inviscid 
solution (6.5), we see that the radial flow component is positive throughout the 
viscous layer and negative in the core. That is, the outflow in the Stokes and 
second boundary layers is balanced by inviscid flow in the interior. This of course 
contrasts with the situation described in $5, where viscosity is active throughout. 

The case p = 0 can be treated in a similar fashion. In  place of the symmetry 
condition (6.4) we now ask that both radial and axial velocity components should 
vanish at  the upper plane z = 1. With this requirement, the solution of (6.3) is 

4 = K(1-2)'. (6.10) 

Rearranging as before, we find that the infinity condition for (4.14) is, in place 
of (6.7), 

$(a) = K, $(a) N 0. (6.11) 

Thus, Benney's solution is again relevant in this layer, and the constant K is 
found to be 

K M 0.374. (6.12) 

We see that the axial flow is always directed towards the lower plane, but 
that outside the boundary layer it is quadratic in x ,  rather than linear, as was the 
case for p = 1. The radial flow is, as before, an outflow in the boundary layer 
and an inflow throughout the rest of the domain. 

It may appear surprising that the inviscid equation (6.3) should have a solu- 
tion which satisfies the boundary conditions at  x = 1. In fact (6.3) cannot hold 
in a neighbourhood of the upper plane, since viscosity must again become effective 
there, and the relevant equation can be shown to be (4.14). Fortuitously, however, 
the solution (6.10) of equation (6.3) is also a solution of (4.14). This is why we 
have been able to circumvent the further necessary algebra to deal with this 
region. The details of this analysis, which involves a new scaling around x = 1,  
are given in Jones (1968). 

A. F. J. is indebted to the Science Research Council for a supporting grant 
during the performance of this work. 
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